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Abstract
For each of the exceptional Lie groups, a complete determination is given
of those pairs of finite-dimensional irreducible representations whose tensor
products (or squares) may be resolved into irreducible representations that
are multiplicity free, i.e. such that no irreducible representation occurs in the
decomposition of the tensor product more than once. Explicit formulae are
presented for the decomposition of all those tensor products that are multiplicity
free, many of which exhibit a stability property.

PACS numbers: 02.20.Sv, 02.10.Xm

1. Introduction

The classification of the complex semisimple Lie algebras was completed by the 25-year-old
Elie Cartan in his thesis [1] of 1894. Four great classes of complex simple Lie algebras were
identified and designated by Cartan as Ak, Bk, Ck and Dk . These Lie algebras are associated
with the classical Lie groups SUk+1, SO2k+1, Sp2k and SO2k , respectively. In addition to the
four classes of classical Lie algebras, Cartan identified five exceptional Lie algebras which
he designated as G2, F4, E6, E7 and E8, where the subscripted integers are the ranks of the
respective algebras.

Starting with Racah’s [2] use of G2 in his analysis of the complex spectra of f-electron
configurations the exceptional Lie groups have become of increasing interest to physicists.
In atomic physics Wadzinski [3], and later Judd [4], made use of the group F4, while in the
interacting boson model of nuclei [5] use was made of E6. Particle physicists developed a
considerable interest in the possibilities of the exceptional Lie groups in the formulation of
grand unified theories of the fundamental forces as typified by the review of Gell-Mann et al [6]
in 1978. A storm of interest in the exceptional Lie group E8 was created in 1984 by Green and
Schwarz’s dramatic development of superstring theories [7]. This storm remains unabated [8].
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The above developments have stimulated much work by both mathematicians and
physicists on the basic properties of the exceptional Lie groups and their representations,
in particular the systematic labelling of their finite-dimensional irreducible representations
(irreps) [9–15], the explicit evaluation of their characters expressed in terms of weight
multiplicities [9–11,16,17], the determination of group–subgroup decompositions in the form
of branching rules [9, 11, 18] and the decomposition of tensor products of irreps [9, 12, 13].

In this paper we give a complete determination, for each of the exceptional Lie groups,
of those irreps whose tensor products (or squares) are multiplicity free, i.e. in the resolution
of the tensor product as a direct sum of irreps no irrep occurs more than once. Our interest in
this problem was stimulated by Stembridge’s [19] recent classification first of all multiplicity-
free products of Schur functions and then of all multiplicity-free products of characters of
SL(n,C). The motivation for examining multiplicity-free tensor products is based on the
fact that their centralizer algebras are Abelian and their decompositions are in some sense
canonical [20]. In corresponding physical applications their particular merit is that they are
free of the complexities that arise from the missing label problem [21, 22].

We start in section 2 by defining tensor product multiplicities and linking them to weight
multiplicities. In particular we state a number of known results that put constraints on tensor
product multiplicities. These constraints form the basis of our analysis in later sections of
tensor product multiplicities of irreps of the exceptional Lie groups. In section 3 we review
the labelling of the finite-dimensional irreps of the exceptional groups both in terms of Dynkin
labels [14, 15] and partitions [9–12], noting the relationship between the two schemes. The
defining, adjoint, fundamental and what we call scaled fundamental irreps are all identified,
as well as the breadth and Dynkin weight of an arbitrary irrep, concepts that are of particular
value in what follows.

In section 4 we present an analysis, for the exceptional Lie groups, of tensor products of
the defining and the adjoint irreps with an arbitrary irrep, identifying those that are multiplicity
free and giving explicit formulae for their decomposition. This is followed in sections 5–10
by consideration of a sequence of increasingly general cases that allow us to systematically
narrow down the search for those tensor products that may be multiplicity free. The first three
cases are concerned with irreps of breadth one: first tensor products of pairs of fundamental
irreps, then tensor products of fundamental irreps with scaled fundamental irreps and finally
tensor products of pairs of scaled fundamental irreps. The last three cases involve irreps of
breadth greater than one: first in tensor products with a fundamental irrep, then with a scaled
fundamental and finally with another irrep having breadth greater than one. At each step
some new multiplicity-free products are identified until the final step is reached where no new
multiplicity-free products exist. Having determined all the possible multiplicity-free tensor
products, the entire collection of such products is collected together by way of summary in
section 11.

2. Tensor product multiplicities

Each finite-dimensional irreducible representation, V λ, of a complex simple Lie algebra, g, or
the corresponding Lie group, G, may be specified, up to equivalence, by means of its highest
weight λ, with λ ∈ P +, the set of dominant integral weights of g. The tensor product of any
pair of such irreps, V µ and V ν with µ, ν ∈ P +, is fully reducible, and its decomposition takes
the form

V µ ⊗ V ν =
∑
λ∈P +

c(λ;µ, ν) V λ, (2.1)
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where the sum is a direct sum, and the coefficients c(λ;µ, ν) are the tensor product
multiplicities giving the number of times the irrep V λ appears as a summand in this
decomposition. A tensor product of the type (2.1) is said to be multiplicity free if

c(λ;µ, ν) � 1 for all λ. (2.2)

The tensor product multiplicities satisfy the symmetry conditions

c(λ;µ, ν) = c(λ; ν, µ) = c(λ;µ, ν) = c(µ; λ, ν), (2.3)

where λ is the highest weight of the irrep V λ that is contragredient to V λ.
There are at least two explicit formulae for the tensor product multiplicities. The first of

these can be readily derived through the use of characters. The character of the irrep V λ is
defined by

ch V λ =
∑

γ∈P(λ)

mλ
γ eγ , (2.4)

where P(λ) is the set of all weights of the irrep V λ, and mλ
γ is the multiplicity of the weight

γ in the irrep V λ, that is the dimension, dim V λ
γ , of the subspace of V λ spanned by vectors

having weight γ . The irrep V λ is said to be multiplicity free if

mλ
γ = dim V λ

γ = 1 for all γ ∈ P(λ). (2.5)

Each simple Lie algebra g of rank k possesses a set of fundamental irreps V ωi with highest
weights ωi for i = 1, 2, . . . , k. The Weyl vector ρ, which is half the sum of the positive roots
of g, may be equally well defined by ρ = ∑k

i=1 ωi . In terms of this vector, Weyl’s character
formula [23, 24] can be expressed as

ch V λ =
∑
w∈W

ε(w) ew(λ+ρ)

/∑
w∈W

ε(w) ew(ρ), (2.6)

where W is the Weyl group of g, and ε(w) = (−1)!(w) where !(w) is the length of w when
expressed as a product of the reflections that generate W .

In this finite-dimensional fully reducible context the irreps V λ and the decomposition of
their tensor products are determined up to equivalence by their characters ch V λ. It follows
from (2.4) and (2.6), and the invariance of weight multiplicities under the action of the Weyl
group, that [25–27]

ch V µ × ch V ν =
∑

γ∈P(µ)

mµ
γ

∑
w∈W

ε(w) ew(ν+γ+ρ)

/ ∑
w∈W

ε(w) ew(ρ)

=
∑

γ∈P(µ)

mµ
γ ch V ν+γ =

∑
λ∈P +

c(λ;µ, ν) ch V λ. (2.7)

Here ν + γ is not necessarily a dominant integral, but ch V ν+γ is either zero, by virtue of
ν + γ + ρ lying on a Weyl reflection hyperplane in weight space, or is equal to ε(w)ch V λ

where λ ∈ P + is obtained from ν + γ by the dot action of the Weyl group, that is
w · (ν + γ ) = w(ν + γ + ρ) − ρ = λ for some w ∈ W . From this follows our first
formula for tensor product multiplicities [25–27]:

Theorem 1. For all λ,µ, ν ∈ P +

c(λ;µ, ν) =
∑

γ∈P(µ)
w·(ν+γ )=λ∈P +

ε(w)mµ
γ =

∑
w∈W

ε(w)m
µ
w·λ−ν . (2.8)
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To present the second formula for these tensor product multiplicities we require some additional
notation. Let the Chevalley generators of the simple Lie algebra g of rank k under consideration
be {hi, ei, fi | i = 1, 2, . . . , k}. Then the simple module corresponding to the irrep V λ can
be realized through the action of these generators on a highest-weight vector vλ. This action
is such that

hivλ = λ(hi)vλ, eivλ = 0 and f
λ(hi )+1
i vλ = 0 for i = 1, 2, . . . , k, (2.9)

where the non-negative integers λ(hi) are just the components of λ in the basis of weight space
afforded by the fundamental weights ωi , that is λ = ∑k

i=1 λ(hi)ωi . From this realization of
irreps a second formula for the tensor product multiplicities has been derived [28, 29]

Theorem 2. For all λ,µ, ν ∈ P +

c(λ;µ, ν) = dim({v ∈ V
µ
λ−ν | eν(hi )+1

i v = 0, i = 1, 2, . . . , k}). (2.10)

It follows from both theorems 1 and 2 that we have [25–28]:

Corollary 1. For all λ,µ, ν ∈ P +

c(λ;µ, ν) = m
µ
λ−ν (2.11)

if either ν + γ ∈ P + for all γ ∈ P(µ) or ν(hi) + 1 � dim V µ for all i = 1, 2, . . . , k, where
dim V µ is the dimension of the irrep V µ.

Failing this, since dim V
µ
λ−ν = m

µ
λ−ν , it follows immediately from theorem 2 that we

have [29]:

Corollary 2. For all λ,µ, ν ∈ P +

c(λ;µ, ν) � m
µ
λ−ν . (2.12)

In addition, as pointed out by Stembridge [19], it also follows from theorem 2 that we
have:

Corollary 3. For all λ,µ, ν ∈ P +

c(λ + ωi;µ, ν + ωi) � c(λ;µ, ν) for i = 1, 2, . . . , k. (2.13)

Proof. Setting σ = ν + ωi we have σ(hi) = ν(hi) + 1. If e
ν(hi )+1
i v = 0 it then follows

that e
σ(hi )+1
i v = 0. Since (λ + ωi) − (ν + ωi) = λ − ν, the result (2.13) follows directly

from (2.10). �
In (2.13) it is possible to establish some conditions under which a certain stability sets in

as a result of the inequality becoming an equality. To be precise we have:

Corollary 4. Let i be fixed. Then for all λ,µ, ν ∈ P + such that ν(hi) = n with n � ns , for
some sufficiently large but finite positive integer ns ,

c(λ + ωi;µ, ν + ωi) = c(λ;µ, ν). (2.14)

Proof. It is first necessary to show that ns exists. Since the irrep V µ is finite dimensional, it
follows that for each v in the corresponding module there must exist a unique smallest positive
finite integer ni(v) such that eni(v)−1

i v �= 0 and e
ni(v)
i v = 0. Now set

ns = max{ni(v) | v ∈ V
µ
λ−ν}. (2.15)

Then provided that ν(hi) = n � ns we have e
ν(hi )+1
i v = 0 for all v ∈ V

µ
λ−ν . Furthermore,

setting σ = ν + ωi , we have σ(hi) = ν(hi) + 1 and σ(hj ) = ν(hj ) for j �= i. It follows that

e
σ(hi )+1
i v = 0 and e

σ(hj )+1
j v = e

ν(hj )+1
j v for all j �= i and all v ∈ V

µ
λ−ν . The required result then

follows from theorem 2. �
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Table 1. Standard labels for irreps of the exceptional groups of rank k, where (λ) = (λ1, λ2, . . . , λk)

is a partition into no more than k non-vanishing parts, so that λ1 � λ2 � · · · � λk � 0 with λi a
non-negative integer for i = 1, 2, . . . , k.

Group Label Constraints

G2 (λ) = (λ1, λ2) λ1 � 2λ2

F4 (λ) = (λ1, λ2, λ3, λ4) λ1 � λ2 + λ3 + λ4

(); λ) = (λ1 + 1
2 , λ2 + 1

2 , λ3 + 1
2 , λ4 + 1

2 ) λ1 > λ2 + λ3 + λ4

E6 (λ) = (λ1 : λ2, λ3, λ4, λ5, λ6) λ1 � λ2 + λ3 + λ4 − λ5 − λ6

E7 (λ) = (λ1, λ2, λ3, λ4, λ5, λ6, λ7) λ1 � λ2 + λ3 + λ4 + λ5 − λ6 − λ7

E8 (λ) = (λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) λ1 � 2λ2 + 2λ3 + 2λ4 − λ5 − λ6 − λ7 − λ8

3. Labelling of irreps of the exceptional Lie groups

The irrep V λ of an exceptional Lie group of rank k may be labelled up to equivalence by
specifying its highest weight λ in the fundamental weight basis through the relation λ =∑k

i=1 aiωi , where as we have indicated ai = λ(hi). The corresponding vector of coefficients,
which we write as ((a)) = ((a1, a2, . . . , ak)), is the label for the irrep that is conventionally
associated with the Dynkin diagram appropriate to the group in question [14,15]. The condition
that the irrep be finite dimensional is just the condition that ai be a non-negative integer for all
i = 1, 2, . . . , k.

Alternatively, though equivalently, natural labelling schemes [9–11] each based upon that
of a maximal classical subgroup of the exceptional Lie group of the same rank have been
developed. In this case the standard labels are identical with those of the chosen subgroup, but
subject to certain constraints. The relevant subgroups used herein are

G2 ⊃ SU3

F4 ⊃ SO9

E6 ⊃ SU2 × SU6

E7 ⊃ SU8

E8 ⊃ SU9.

(3.1)

The standard labels involve constrained partitions and are thus often referred to as partition
labels. The standard labels for the exceptional Lie groups based upon the above subgroups
have been given by Black et al [13] and are reproduced in table 1.

The correspondence between the Dynkin labels ((a)) and the standard labels (λ) has been
described elsewhere [10] and is reproduced in table 2. In the case of F4 the labels (λ) and
(); λ) distinguish between integral and half-integral weights with ) signifying the weight
( 1

2 ,
1
2 ,

1
2 ,

1
2 ), while for E6 the colon : is introduced to separate those parts of the weight

associated with the SU2 and SU6 weight spaces.
The use of Dynkin labels is particularly helpful in defining two parameters that play a

crucial role in what follows, namely the breadth, b(λ), and the Dynkin weight, w(λ) of a
dominant integral highest weight λ. These are defined for λ = ((a1, a2, . . . , ak)) by

b(λ) = #{ai > 0 | i = 1, 2, . . . , k} and w(λ) =
k∑

i=1

ai, (3.2)

where #{· · ·} indicates the number of elements in the set {· · ·}. It should be noted that the
fundamental irreps have highest weights ωi that are characterized by the fact that they have
breadth b(ωi) = 1 and Dynkin weight w(ωi) = 1 for all i = 1, 2, . . . , k.
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Table 2. Correspondence between the Dynkin labels and the standard labels for the irreps of the
exceptional Lie groups.

Group Dynkin label ((a)) Standard label (λ)

G2 a1 = λ2 λ1 = 2a1 + a2

a2 = λ1 − 2λ2 λ2 = a1

F4 a1 = λ2 − λ3 λ1 = a1 + 2a2 + 3
2 a3 + a4

a2 = λ3 − λ4 λ2 = a1 + a2 + 1
2 a3

a3 = 2λ4 λ3 = a2 + 1
2 a3

a4 = λ1 − λ2 − λ3 − λ4 λ4 = 1
2 a3

E6 a1 = λ2 − λ3 λ1 = a1 + 2a2 + 3a3 + 2a4 + a5 + 2a6

a2 = λ3 − λ4 λ2 = a1 + a2 + a3 + a4 + a5

a3 = λ4 − λ5 λ3 = a2 + a3 + a4 + a5

a4 = λ5 − λ6 λ4 = a3 + a4 + a5

a5 = λ6 λ5 = a4 + a5

a6 = 1
2 (λ1 − λ2 − λ3 − λ4 + λ5 + λ6) λ6 = a5

E7 a1 = λ7 λ1 = 2a1 + 3a2 + 4a3 + 3a4 + 2a5 + a6 + 2a7

a2 = λ6 − λ7 λ2 = a1 + a2 + a3 + a4 + a5 + a6

a3 = λ5 − λ6 λ3 = a1 + a2 + a3 + a4 + a5

a4 = λ4 − λ5 λ4 = a1 + a2 + a3 + a4

a5 = λ3 − λ4 λ5 = a1 + a2 + a3

a6 = λ2 − λ3 λ6 = a1 + a2

a7 = 1
2 (λ1 − λ2 − λ3 − λ4 − λ5 + λ6 + λ7) λ7 = a1

E8 a1 = λ8 λ1 = 2a1 + 3a2 + 4a3 + 5a4 + 6a5 + 4a6 + 2a7 + 3a8

a2 = λ7 − λ8 λ2 = a1 + a2 + a3 + a4 + a5 + a6 + a7

a3 = λ6 − λ7 λ3 = a1 + a2 + a3 + a4 + a5 + a6

a4 = λ5 − λ6 λ4 = a1 + a2 + a3 + a4 + a5

a5 = λ4 − λ5 λ5 = a1 + a2 + a3 + a4

a6 = λ3 − λ4 λ6 = a1 + a2 + a3

a7 = λ2 − λ3 λ7 = a1 + a2

a8 = 1
3 (λ1 − 2λ2 − 2λ3 − 2λ4 + λ5 + λ6 + λ7 + λ8) λ8 = a1

So as to remove any ambiguities in the numbering of the fundamental weights, the labels
for the fundamental irreps and their dimensions are displayed in table 3, in which the highest
weights of the defining (or lowest-dimensional non-trivial) irrep, ω, its contragredient ω (if
different) and the adjoint irrep θ have all been identified, for each exceptional Lie group3.

On the other hand the great merit of what we have called the standard labels for irreps
of the exceptional Lie groups, G, is that they coincide with the labels used for irreps of the
maximal classical subgroups, H , of the same rank that are listed in (3.1). This allows us to
write down and exploit the following formula for the evaluation of tensor products of irreps of
the exceptional Lie groups [12, 13]:

ch V
µ

G × ch V ν
G =

∑
σ,τ∈P +

H

bµ
σ cH (τ ; σ, ν + δ) ch V τ−δ

G =
∑
λ∈P +

G

cG(λ;µ, ν) ch V λ
G. (3.3)

Here the summation is carried out over all σ and τ that are dominant integral weights of the
classical subgroup H , and δ = ρG − ρH where ρG and ρH are the Weyl vectors of G and H ,
respectively. In this formula (3.3) the coefficients bµ

σ are the branching rule multiplicities giving
the number of times the irrep V σ

H of the classical group H appears in the restriction from G to

3 We take the opportunity to point out an error in table 1 of [17]. The Dynkin label for the adjoint representation (θ)

of SU(k + 1) = Ak should have read ((a)) = ((100 · · · 001)).
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Table 3. The fundamental irreps of the exceptional Lie groups; their numbering, labels and
dimensions.

G ωi ((a)) (λ) Dimension

G2 ω1 = θ 10 (21) 14
ω2 = ω 01 (1) 7

F4 ω1 = θ 1 000 (12) 52
ω2 0 100 (212) 1 274
ω3 0 010 () 1) 273
ω4 = ω 0 001 (1) 26

E6 ω1 = ω 100 000 (1 : 1) 27
ω2 010 000 (2 : 12) 351
ω3 001 000 (3 : 13) 2 925
ω4 000 100 (2 : 14) 351
ω5 = ω 000 010 (1 : 15) 27
ω6 = θ 000 001 (2 : 0) 78

E7 ω1 = θ 1 000 000 (216) 133
ω2 0 100 000 (315) 8 645
ω3 0 010 000 (414) 365 750
ω4 0 001 000 (313) 27 664
ω5 0 000 100 (212) 1 539
ω6 = ω 0 000 010 (12) 56
ω7 0 000 001 (2) 912

E8 ω1 = ω = θ 10 000 000 (217) 248
ω2 01 000 000 (316) 30 380
ω3 00 100 000 (415) 2 450 240
ω4 00 010 000 (514) 146 325 270
ω5 00 001 000 (613) 6899 079 264
ω6 00 000 100 (412) 6 696 000
ω7 00 000 010 (21) 3 875
ω8 00 000 001 (3) 147 250

H of the irrep V
µ

G of the exceptional Lie group G. The coefficients cH (τ ; σ, ν + δ) are tensor
product multiplicities associated with the classical group H , and as such may be evaluated by
standard methods. The only subtlety arising in the exploitation of this formula is that the last
step leading to the evaluation of the tensor product coefficients cG(λ;µ, ν) of the exceptional
Lie group G may require the use of the dot action of the Weyl group of G to convert any non-
standard label τ − δ /∈ P +

G to some standard label λ ∈ P +
G. However, the requisite modification

rules have all been identified previously [12, 13]. These include all the modification rules
associated with the classical subgroup H , augmented by a single additional modification rule
associated exclusively with the exceptional Lie group G through a violation of the constraints
listed in table 1. For each exceptional Lie group G these take the form given in table 4.

The result of the application of these and other modification rules to a non-standard labelled
irrep is to either produce a null result or a standard labelled irrep with a possible change of
sign. Extensive examples of the application of modification rules have been given by Black
et al [13]. Here, by way of example, we note that the G2 irrep labels (32) and (64) are non-
standard. Using the relevant formula of table 4 we find for (λ) = (32) that h = 0 and hence
w · (32) = (32) with ε(w) = −1, from which it follows that ch V (32) = −ch V (32) = 0. On
the other hand for (λ) = (64) we find h = 1 and hence w · (64) = (63) with ε(w) = −1, from
which it follows that ch V (64) = −ch V (63).
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Table 4. Weight space modification rules of the form λ = (λ1, λ2, . . . , λk) → w · λ =
w(λ + ρG) − ρG with w ∈ WG\WH and ε(w) = −1 to be used if h � 0.

G h w · λ
G2 −(λ1 − 2λ2 + 1) (λ1, λ2 − h)

F4 − 1
2 (λ1 − λ2 − λ3 − λ4 + 1) (λ1 + h, λ2 − h, λ3 − h, λ4 − h)

E6 − 1
2 (λ1 − λ2 − λ3 − λ4 + λ5 + λ6 + 2) (λ1 + h, λ2 − h, λ3 − h, λ4 − h, λ5, λ6)

E7 − 1
2 (λ1 − λ2 − λ3 − λ4 − λ5 + λ6 + λ7 + 2) (λ1, λ2 − h, λ3 − h, λ4 − h, λ5 − h, λ6, λ7)

E8 − 1
3 (λ1 − 2λ2 − 2λ3 − 2λ4 + λ5 + λ6 + λ7 + λ8 + 3) (λ1, λ2 − h, λ3 − h, λ4 − h, λ5, λ6, λ7, λ8)

There is a sense in which (3.3) is an analogue of (2.7), with the role of the subgroup H

in (3.3) being played by the subgroup U(1)⊗k in (2.7). This becomes clear by noting that
this latter subgroup is such that the branching rule multiplicities for the restriction from G to
U(1)⊗k are nothing other than the weight multiplicities of G. By the same token the analogue
of theorem 1 takes the form:

Theorem 3.

c(λ;µ, ν) =
∑

σ,τ∈P +
H

w·(τ−δ)=λ

ε(w) bµ
σ cH (τ ; σ, ν + δ)

=
∑
w∈W

σ,w·λ+δ∈P +
H

ε(w) bµ
σ cH (w · λ + δ; σ, ν + δ). (3.4)

In the calculations that follow it is the branching rule algorithm based on (3.3), or
equivalently (3.4), that is used to evaluate tensor products of irreps of the exceptional Lie
groups, rather than any weight multiplicity algorithm based on (2.7), or equivalently (2.8).
The algorithm, complete with relevant branching rule data for the restriction from G to H , the
tensor product procedures forH and all the necessary modification rules, has been implemented
in SCHUR4, and it is this programme that has been used to derive the results needed here.

We note that in exploiting (2.3) to reduce the number of independent tensor products that
need to be evaluated, the irreps of the exceptional Lie groups are all self-contragredient save
some of those of E6. In the case of E6 an irrep V λ is contragredient to V λ if their standard
labels (λ) and (λ) are related by [17]:

(λ1 : λ2, λ3, λ4, λ5, λ6) = (λ1 : λ2, λ2 − λ6, λ2 − λ5, λ2 − λ4, λ2 − λ3), (3.5a)

or equivalently in terms of Dynkin labels

((a1, a2, a3, a4, a5, a6)) = ((a5, a4, a3, a2, a1, a6)). (3.5b)

Accordingly, an irrep V λ of E6 is self-contragredient if and only if

λ2 = λ3 + λ6 = λ4 + λ5 or equivalently a1 = a5, a2 = a4. (3.5c)

For the sake of typographical simplicity, in what follows, we denote the irrep V λ of highest
weight λ by (λ) and the tensor product V µ ⊗V ν by (µ)× (ν). Dynkin labels ((a)) are usually
abbreviated to just a1a2 · · · ak . Since we are only considering irreps up to equivalence and all
the tensor products are fully reducible, labels (λ) may also be interpreted as characters, ch V λ

for which the modification rules ch V λ = ε(w)ch V w·λ may be written as (λ) = ε(w)(w · λ)
wherever they are required.

4 SCHUR, an interactive program for calculating properties of Lie groups and symmetric functions, distributed by
S Christensen. E-mail: steve@scm.vnet; http://scm.vnet/Christensen.html.
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Table 5. The tensor product (ω) × (ν) for G2.

(1) × (m, n) = (m + 1, n + 1) + (m + 1, n) + (m, n + 1) + (m, n) + (m, n − 1)
+ (m − 1, n) + (m − 1, n − 1)

Table 6. The tensor product (ω) × (ν) for E6.

(1 : 1) × (m : n, p, q, r, s) = (m + 1 : n + 1, p, q, r, s) + (m + 1 : n, p + 1, q, r, s) + (m + 1 : n, p, q + 1, r, s)
+ (m + 1 : n, p, q, r + 1, s) + (m + 1 : n, p, q, r, s + 1)
+ (m + 1 : n − 1, p − 1, q − 1, r − 1, s − 1) + (m : n + 1, p + 1, q + 1, r + 1, s)
+ (m : n + 1, p + 1, q + 1, r, s + 1) + (m : n + 1, p + 1, q, r + 1, s + 1)
+ (m : n + 1, p, q + 1, r + 1, s + 1) + (m : n, p + 1, q + 1, r + 1, s + 1)
+ (m : n, p, q, r − 1, s − 1) + (m : n, p, q − 1, r, s − 1)
+ (m : n, p, q − 1, r − 1, s)
+ (m : n, p − 1, q, r, s − 1) + (m : n, p − 1, q, r − 1, s)
+ (m : n, p − 1, q − 1, r, s)
+ (m : n − 1, p, q, r, s − 1) + (m : n − 1, p, q, r − 1, s)
+ (m : n − 1, p, q − 1, r, s)
+ (m : n − 1, p − 1, q, r, s) + (m − 1 : n + 1, p, q, r, s)
+ (m − 1 : n, p + 1, q, r, s)
+ (m − 1 : n, p, q + 1, r, s) + (m − 1 : n, p, q, r + 1, s)
+ (m − 1 : n, p, q, r, s + 1)
+ (m − 1 : n − 1, p − 1, q − 1, r − 1, s − 1)

4. Tensor products with the defining and adjoint irreps

The cases of the tensor products (ω) × (ν) and (θ) × (ν) have been largely covered in two
earlier works [12, 17].

All the defining irreps (ω) are weight multiplicity free except for those of F4 and E8. It
follows from (2.12) that, with those exceptions,

G2, E6, E7 : c(λ;ω, ν) ∈ {0, 1} for all (ν), (4.1a)

i.e. the tensor products (ω) × (ν) are multiplicity free for all (ν). In fact there only exists one
other weight multiplicity-free irrep, namely the contragredient (ω) of the defining irrep of E6.
It follows that in addition to (4.1a) we have

E6 : c(λ;ω, ν) ∈ {0, 1} for all (ν), (4.1b)

i.e. the tensor products (ω) × (ν) of E6 are also multiplicity free for all (ν).
By using (2.7) we can be more precise, the tensor product decompositions take the forms

given in tables 5–7.
By virtue of (2.3) the tensor product decomposition of (ω) × (ν) for E6 may be obtained

from that for (ω) × (ν) given in table 6 by taking the contragredient of every term by means
of (3.5a). This suffices to deal with the (ω) case since (ν) varies over all irreps just as (ν) does.

The decompositions given in tables 5–8 apply to all possible irreps (ν) of the relevant
exceptional group G. However, for particular values of the parameters m, n, . . . , t it may
be necessary to invoke the modification rules of table 4, as well as those associated with
the appropriate maximal classical subgroup H , in order to interpret the results. However,
corollary 2 guarantees that even after modification the tensor product decompositions are all
multiplicity free.

In contrast to this the defining irrep (ω) of F4 is not weight multiplicity free so that we
cannot conclude that all tensor products involving (ω) will be multiplicity free. In fact we find
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Table 7. The tensor product (ω) × (ν) for E7.

(12) × (m, n, p, q, r, s, t) = (m + 1, n + 1, p + 1, q + 1, r + 1, s + 1, t)
+ (m + 1, n + 1, p + 1, q + 1, r + 1, s, t + 1)
+ (m + 1, n + 1, p + 1, q + 1, r, s + 1, t + 1)
+ (m + 1, n + 1, p + 1, q, r + 1, s + 1, t + 1)
+ (m + 1, n + 1, p, q + 1, r + 1, s + 1, t + 1) + (m + 1, n + 1, p, q, r, s, t)
+ (m + 1, n, p + 1, q + 1, r + 1, s + 1, t + 1) + (m + 1, n, p + 1, q, r, s, t)
+ (m + 1, n, p, q + 1, r, s, t) + (m + 1, n, p, q, r + 1, s, t)
+ (m + 1, n, p, q, r, s + 1, t)
+ (m + 1, n, p, q, r, s, t + 1) + (m, n + 1, p + 1, q + 1, r + 1, s + 1, t + 1)
+ (m, n + 1, p + 1, q, r, s, t) + (m, n + 1, p, q + 1, r, s, t)
+ (m, n + 1, p, q, r + 1, s, t)
+ (m, n + 1, p, q, r, s + 1, t) + (m, n + 1, p, q, r, s, t + 1)
+ (m, n, p + 1, q + 1, r, s, t)
+ (m, n, p + 1, q, r + 1, s, t) + (m, n, p + 1, q, r, s + 1, t)
+ (m, n, p + 1, q, r, s, t + 1)
+ (m, n, p, q + 1, r + 1, s, t) + (m, n, p, q + 1, r, s + 1, t)
+ (m, n, p, q + 1, r, s, t + 1)
+ (m, n, p, q, r + 1, s + 1, t) + (m, n, p, q, r + 1, s, t + 1)
+ (m, n, p, q, r, s + 1, t + 1)
+ (m, n, p, q, r, s − 1, t − 1) + (m, n, p, q, r − 1, s, t − 1)
+ (m, n, p, q, r − 1, s − 1, t)
+ (m, n, p, q − 1, r, s, t − 1) + (m, n, p, q − 1, r, s − 1, t)
+ (m, n, p, q − 1, r − 1, s, t)
+ (m, n, p − 1, q, r, s, t − 1) + (m, n, p − 1, q, r, s − 1, t)
+ (m, n, p − 1, q, r − 1, s, t)
+ (m, n, p − 1, q − 1, r, s, t) + (m, n − 1, p, q, r, s, t − 1)
+ (m, n − 1, p, q, r, s − 1, t)
+ (m, n − 1, p, q, r − 1, s, t) + (m, n − 1, p, q − 1, r, s, t)
+ (m, n − 1, p − 1, q, r, s, t)
+ (m, n − 1, p − 1, q − 1, r − 1, s − 1, t − 1) + (m − 1, n, p, q, r, s, t − 1)
+ (m − 1, n, p, q, r, s − 1, t) + (m − 1, n, p, q, r − 1, s, t)
+ (m − 1, n, p, q − 1, r, s, t)
+ (m − 1, n, p − 1, q, r, s, t) + (m − 1, n, p − 1, q − 1, r − 1, s − 1, t − 1)
+ (m − 1, n − 1, p, q, r, s, t) + (m − 1, n − 1, p, q − 1, r − 1, s − 1, t − 1)
+ (m − 1, n − 1, p − 1, q, r − 1, s − 1, t − 1)
+ (m − 1, n − 1, p − 1, q − 1, r, s − 1, t − 1)
+ (m − 1, n − 1, p − 1, q − 1, r − 1, s, t − 1)
+ (m − 1, n − 1, p − 1, q − 1, r − 1, s − 1, t)

that

F4 : c(λ;ω, ν) ∈ {0, 1} for all (ν) with either




ν4 = 0,

ν1 = ν2 + ν3 + ν4,

or both.

(4.2)

However, for other irreps (ν) tensor product mutiplicities of 2 will arise as is clear from the
general results given in table 8.

The fact that the tensor products identified in (4.2) are multiplicity free can then be seen
by noting that the cases ν4 = 0 and ν1 = ν2 + ν3 + ν4 correspond in the above tabulation
to (ν) = (m, n, p, 0) and either (ν) = (n + p + r, n, p, r) or (ν) = (); n + p + r, n, p, r),
respectively. The modifications leading to the required reduction of the maximum multiplicity
from 2 to 1 in the two formulae of table 8 are then given by
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Table 8. The tensor product (ω) × (ν) for F4.

(1) × (m, n, p, r) = (m + 1, n, p, r) + ();m, n, p, r) + ();m, n, p, r − 1)
+ ();m, n, p − 1, r) + ();m, n, p − 1, r − 1) + ();m, n − 1, p, r)
+ ();m, n − 1, p, r − 1) + ();m, n − 1, p − 1, r) + ();m, n − 1, p − 1, r − 1)
+ (m, n + 1, p, r) + (m, n, p + 1, r) + (m, n, p, r + 1) + 2(m, n, p, r)

+ (m, n, p, r − 1) + (m, n, p − 1, r) + (m, n − 1, p, r) + ();m − 1, n, p, r)
+ ();m − 1, n, p, r − 1) + ();m − 1, n, p − 1, r) + ();m − 1, n, p − 1, r − 1)
+ ();m − 1, n − 1, p, r) + ();m − 1, n − 1, p, r − 1) + ();m − 1, n − 1, p − 1, r)
+ ();m − 1, n − 1, p − 1, r − 1) + (m − 1, n, p, r)

(1) × ();m, n, p, r) = ();m + 1, n, p, r) + (m + 1, n + 1, p + 1, r + 1) + (m + 1, n + 1, p + 1, r)
+ (m + 1, n + 1, p, r + 1) + (m + 1, n + 1, p, r) + (m + 1, n, p + 1, r + 1)
+ (m + 1, n, p + 1, r) + (m + 1, n, p, r + 1) + (m + 1, n, p, r)
+ ();m, n + 1, p, r) + ();m, n, p + 1, r) + ();m, n, p, r + 1)
+ 2();m, n, p, r) + ();m, n, p, r − 1) + ();m, n, p − 1, r)
+ ();m, n − 1, p, r) + (m, n + 1, p + 1, r + 1) + (m, n + 1, p + 1, r)
+ (m, n + 1, p, r + 1) + (m, n + 1, p, r) + (m, n, p + 1, r + 1)
+ (m, n, p + 1, r) + (m, n, p, r + 1) + (m, n, p, r)

+ ();m − 1, n, p, r)

r = 0 : (m, n, p, r − 1) = (m, n, p,−1) = −(m, n, p, 0) = −(m, n, p, r),

m = n + p + r : ();m, n − 1, p − 1, r − 1) = (); n + p + r, n − 1, p − 1, r − 1)

= −(n + p + r, n, p, r) = −(m, n, p, r),

m = n + p + r + 1 : (m + 1, n, p, r) = (n + p + r + 2, n, p, r)

= −(); n + p + r + 1, n, p, r) = −();m, n, p, r).

(4.3)

In the case ofE8 the defining irrep (ω) coincides with the adjoint irrep (θ). Quite generally,
for any simple Lie algebra g and the corresponding Lie group G, in the case of the adjoint
irrep (θ) it follows from proposition 4.1 of King and Wybourne [17] that

c(λ; θ, ν) ∈ {0, 1} for all λ �= ν (4.4a)

c(ν; θ, ν) = b(ν) (4.4b)

where b(ν) is the breadth of ν, defined in (3.2) as the number of non-vanishing components
of the Dynkin label ((a)) of (ν).

At this juncture it is useful to introduce the idea of a scaled fundamental irrep which is
an irrep (ν) with breadth b(ν) = 1 and Dynkin weight w(ν) = n, with n any positive integer.
It follows from the definition of breadth and Dynkin weight given in (3.2) that ν = nωi for
some i ∈ {1, 2, . . . , k} and some positive integer n. In the Dynkin label notation ((a)) such an
irrep has a single non-vanishing component, namely the ith component ai = ν(hi) = n, and
in the standard, partition label notation (ν) the parts of (ν) are just the corresponding parts of
the standard, partition label of the fundamental irrep (ωi) all scaled by n.

Thus (4.4a), (4.4b) imply that the tensor products (θ)× (ν) will be multiplicity free if and
only if (ν) is either a fundamental irrep (ωi) or a scaled fundamental irrep (nωi) with n > 1.
Such products may be evaluated explicitly for each exceptional Lie group for any particular
value of n or indeed a range of different values. However, in carrying out this analysis we are
aided by the following stability result which follows from corollary 4.

Proposition 1. For any µ, ν ∈ P + with ν(hi) � ns(µ) for some sufficiently large but positive
finite integer ns(µ), if

(µ) × (ν) =
∑
λ∈P +

c(λ;µ, ν) (λ), (4.5)
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Table 9. Explicit tensor products (θ) × (nωi) for G2.

(21) × (n) = (n + 2, 1)1 + (n + 1, 2)3 + (n + 1, 1)2 + (n + 1)1 + (n, 1)2 + (n)1

+ (n − 1, 1)3 + (n − 1)2

(21) × (2n, n) = (2n + 2, n + 1)1 + (2n + 1, n − 1)1 + (2n, n)1 + (2n, n − 1)2

+ (2n − 1, n − 2)2 + (2n − 2, n − 1)1

then

(µ) × (ν + ωi) =
∑
λ∈P +

c(λ;µ, ν) (λ + ωi). (4.6)

Proof. It suffices to take ns(µ) to be the maximum of those ns defined for various λ but fixed
µ and ν in corollary 4. �

In principle, it is not too difficult to evaluate ns(µ) for any irrep (µ). This can be seen
by noting that the Chevalley generators ei, fi, hi generate an sl(2) = A1 subalgebra of the
Lie algebra g under consideration. On restriction from g to sl(2) any irrep (µ) of g may be
decomposed into a direct sum of irreps (m) of sl(2) of dimension m+1. However every vector
v in the corresponding sl(2) module is annihilated by em+1

i . It follows that if we have the
branching

g → sl(2) : (µ) →
mmax∑

m=mmin

bµ
m (m) (4.7)

then

ns(µ) = mmax + 1. (4.8)

In the context of the particular tensor products (θ) × (nωi) under consideration here,
proposition 1 implies that their decomposition becomes structurally stable with respect to the
parameter n provided that the values of n are sufficiently large. In this sense there exists in
each case a generic, n-dependent, decomposition of (θ) × (nωi) for each i = 1, 2, . . . , k for
each of the exceptional groups. These generic decompositions are given in tables 9–13.

For lower values of n these decompositions remain valid, but are subject to modification
rules. These rules leave the tensor products multiplicity free, as required by (4.4), but certain
terms in the generic product are to be eliminated if n is too small. In the tabulation a term of
the form (λ)r is to be retained if and only if n � r . The value, ns(θ), of n at which the products
stabilize to their generic form is thus the maximum value of the subscripts on the terms (λ)r
appearing in any decomposition. It can be seen for example that the first G2 product (21)×(n)

stabilizes at n = 3, while all the other products stabilize at n = 1 or 2.
The decompositions of these tensor products were all determined through the use of

SCHUR with n sufficiently large for stability to be observed. Then, by considering a range of
smaller values of n, the stabilization value ns(θ) was confirmed, as well as the values of r for
each term (λ)r . Finally, the generic result was checked dimensionally using Maple5, with the
dimension formula depending polynomially on the parameter n.

The same procedure was applied in the case of the results given in tables 5–8. The formulae
were arrived at through the use either of SCHUR or the known weights of (ω), and they were
then checked for accuracy using Maple to evaluate the dimension of each of the products as a
multinomial in the relevant parameters m, n, p, . . . , t .

5 Maple, Waterloo Maple Software, Waterloo, Ontario, Canada.
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Table 10. Explicit tensor products (θ)× (nωi), with i = 1, 2, 4, (θ)× (2nω3), (θ)× ((2n + 1)ω3)

for F4.

(12) × (n) = (n + 1, 1)1 + (); n)1 + (n, 12)2 + (n)1 + (); n − 1)2 + (n − 1, 1)2

(12) × (n2) = (n + 1, n + 1)1 + (n + 1, n, 1)1 + (n + 1, n − 1)1 + (n2)1

+ (n, n − 1, 1)2 + (n − 1, n − 1)1

(12) × (2n, n2) = (2n + 1, n + 1, n)1 + (2n + 1, n2, 1)1 + (2n + 1, n, n − 1)1

+ (); 2n, n − 1, n − 1)1 + (2n, n + 1, n − 1)1 + (2n, n2)1

+ (2n, n, n − 1, 1)2 + (2n, n − 1, n − 1)1 + (2n − 1, n, n − 1)1

(12) × (3n, n3) = (3n + 1, n + 1, n2)1 + (3n + 1, n3)1 + (3n + 1, n2, n − 1)1

+ (); 3n, n, n − 1, n − 1)1 + (); 3n, (n − 1)3)1 + (3n, n + 1, n, n − 1)1

+ (3n, n3)1 + (3n, n2, n − 1)1 + (3n, n, n − 1, n − 1)1

+ (); 3n − 1, (n − 1)3)1 + (3n − 1, n2, n − 1)1

(12) × (); 3n + 1, n3) = (); 3n + 2, n + 1, n2)1 + (); 3n + 2, n3)1 + (); 3n + 2, n2, n − 1)1

+ (3n + 2, n + 1, n2)1 + (3n + 2, n3)1 + (); 3n + 1, n + 1, n, n − 1)1

+ (); 3n + 1, n3)1 + (); 3n + 1, n2, n − 1)1 + (); 3n + 1, n, n − 1, n − 1)1

+ (3n + 1, n3)1 + (); 3n, n2, n − 1)1

Table 11. Explicit tensor products (θ) × (nωi) for E6.

(2 : 0) × (n : n) = (n + 2 : n)1 + (n + 1 : n, 13)1 + (n : n)1 + (n : n − 1, 1)2

(2 : 0) × (n : n5) = (n + 2 : n5)1 + (n + 1 : n2, (n − 1)3)1 + (n : n5)1 + (n : (n − 1)4, n − 2)2

(2 : 0) × (2n : 0) = (2n + 2 : 0)1 + (2n + 1 : 13)1 + (2n : 214)1 + (2n : 0)1

+ (2n − 1 : 13)2 + (2n − 2 : 0)1

(2 : 0) × (2n : n2) = (2n + 2 : n2)1 + (2n + 1 : n + 1, n, 12)1 + (2n + 1 : n2, 13)1

+ (2n : n + 1, n − 1)1 + (2n : n2)1 + (2n : n, n − 1, 1)2 + (2n − 1 : n2, 13)1

(2 : 0) × (2n : n4) = (2n + 2 : n4)1 + (2n + 1 : (n + 1)2, n2, 1)1 + (2n + 1 : n, (n − 1)3)1

+ (2n : (n + 1)4, 2)1 + (2n : n4)1 + (2n : n3, n − 1, 1)2 + (2n − 1 : n, (n − 1)3)1

(2 : 0) × (3n : n3) = (3n + 2 : n3)1 + (3n + 1 : (n + 1)2, n, 1)1 + (3n + 1 : n + 1, n2, 12)1

+ (3n + 1 : (n − 1)3)1 + (3n : (n + 1)3, 2, 1)1 + (3n : n + 1, n, n − 1)1

+ (3n : n3)1 + (3n : n2, n − 1, 1)2 + (3n − 1 : n + 1, n2, 12)1

+ (3n − 1 : (n − 1)3)1

5. Tensor products of pairs of fundamental irreps

The results of the previous section give the complete decomposition of all multiplicity-free
tensor products of the defining and the adjoint irreps with any other irrep for each exceptional
Lie group. Both the defining (as well as its contragredient in the case of E6) and the adjoint
irrep are fundamental irreps in the case of the exceptional Lie groups. But there remain other
fundamental irreps and, of course, scaled fundamental irreps to be dealt with, let alone irreps
of greater breadth. To exhaust all possibilities for multiplicity-free tensor products we proceed
by considering a succession of types of tensor product (µ) × (ν) characterized by the values
of the breadth and Dynkin weight of (µ) and (ν). The various cases are defined in table 14.

The significance of this list of cases is that passing from one case to another in search of
multiplicity-free tensor products allows one to invoke the crucial corollary 3 that was pointed
out by Stembridge [19]. This corollary has the following rather obvious consequence.

Corollary 5. Let µ, ν, π ∈ P +. If the tensor product (µ) × (ν) is not multiplicity free, then
(i) neither is the tensor product (µ) × (ν + ωi) for any i = 1, 2, . . . , k, (ii) nor any tensor
product of the form (µ) × (ν + π).

Proof. By hypothesis there exists λ ∈ P + such that c(λ;µ, ν) > 1. Corollary 3 then implies
that c(λ + ωi;µ, ν + ωi) � c(λ;µ, ν) > 1, proving part (i). Since π = ∑k

i=1 aiωi with ai a
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Table 12. Explicit tensor products (θ) × (nωi) for E7.

(216) × (2n) = (2n + 2, 16)1 + (2n + 1, 215)1 + (2n + 1, 13)1 + (2n, 14)2

+ (2n)1 + (2n − 1, 1)1

(216) × (n2) = (n + 2, n + 1, 15)1 + (n + 1, n − 1)1 + (n2)1 + (n, n − 1, 1)2

(216) × (2n, n2) = (2n + 2, (n + 1)2, 14)1 + (2n + 1, n2, 13)1 + (2n + 1, n, n − 1)1

+ (2n, n + 1, n − 1)1 + (2n, n2, 14)1 + (2n, n2)1

+ (2n, n, n − 1, 1)2

(216) × (2n, n6) = (2n + 2, (n + 1)6)1 + (2n + 1, n5, n − 1)1 + (2n, n6)1 + (2n, n2, (n − 1)4)1

+ (2n − 1, (n − 1)5, n − 2)2 + (2n − 2, (n − 1)6)1

(216) × (3n, n3) = (3n + 2, (n + 1)3, 13)1 + (3n + 1, n + 1, n2, 12)1 + (3n + 1, n3, 13)1

+ (3n + 1, n2, n − 1)1 + (3n, n + 1, n2, 13)1 + (3n, n + 1, n, n − 1)1

+ (3n, n3)1 + (3n, n2, n − 1, 1)2 + (3n − 1, (n − 1)3)1

(216) × (3n, n5) = (3n + 2, (n + 1)5, 1)1 + (3n + 1, (n + 1)5, 2)1 + (3n + 1, (n + 1)2, n3, 1)1

+ (3n + 1, n4, n − 1)1 + (3n, n5)1 + (3n, n4, n − 1, 1)2

+ (3n, n, (n − 1)4)1 + (3n − 1, n5, 1)1 + (3n − 1, n2, (n − 1)3)1

(216) × (4n, n4) = (4n + 2, (n + 1)4, 12)1 + (4n + 1, (n + 1)4, 21)1 + (4n + 1, (n + 1)2, n2, 1)1

+ (4n + 1, n + 1, n3, 12)1 + (4n + 1, n3, n − 1)1 + (4n, (n + 1)2, n2, 12)1

+ (4n, n + 1, n2, n − 1)1 + (4n, n4)1 + (4n, n3, n − 1, 1)2

+ (4n, (n − 1)4)1 + (4n − 1, n4, 1)1 + (4n − 1, n, (n − 1)3)1

Table 13. Explicit tensor products (θ) × (nωi) for E8.

(217) × (2n, n) = (2n + 2, n + 1, 16)1 + (2n + 1, n, 15)1 + (2n + 1, n − 1)1

+ (2n, n, 16)1 + (2n, n)1 + (2n, n − 1, 1)2

(217) × (2n, n7) = (2n + 2, (n + 1)7)1 + (2n + 1, n6, n − 1)1 + (2n, n7)1

+ (2n, n, (n − 1)6)1 + (2n − 1, (n − 1)6, n − 2)2 + (2n − 2, (n − 1)7)1

(217) × (3n) = (3n + 2, 17)1 + (3n + 1, 216)1 + (3n + 1, 15)1 + (3n + 1, 12)1

+ (3n, 16)1 + (3n, 13)2 + (3n)1 + (3n − 1, 1)1

(217) × (3n, n6) = (3n + 2, (n + 1)6, 1)1 + (3n + 1, (n + 1)6, 2)1 + (3n + 1, n + 1, n5, 1)1

+ (3n + 1, n5, n − 1)1 + (3n, n6)1 + (3n, n5, n − 1, 1)2

+ (3n, (n − 1)6)1 + (3n − 1, n6, 1)1 + (3n − 1, n, (n − 1)5)1

(217) × (4n, n2) = (4n + 2, (n + 1)2, 15)1 + (4n + 1, n + 1, n, 14)1 + (4n + 1, n2, 15)1

+ (4n + 1, n2, 12)1 + (4n + 1, n, n − 1)1 + (4n, n + 1, n, 15)1

+ (4n, n + 1, n − 1)1 + (4n, n2, 13)1 + (4n, n2)1

+ (4n, n, n − 1, 1)2 + (4n − 1, (n − 1)2)1

(217) × (4n, n5) = (4n + 2, (n + 1)5, 12)1 + (4n + 1, (n + 1)5, 21)1 + (4n + 1, n + 1, n4, 1)1

+ (4n + 1, n5, 12)1 + (4n + 1, n4, n − 1)1 + (4n, n + 1, n4, 12)1

+ (4n, n5)1 + (4n, n4, n − 1, 1)2 + (4n, n2, (n − 1)3)1

+ (4n − 1, n5, 1)1 + (4n − 1, (n − 1)5)1

(217) × (5n, n4) = (5n + 2, (n + 1)4, 13)1 + (5n + 1, (n + 1)4, 212)1 + (5n + 1, (n + 1)2, n2, 13)1

+ (5n + 1, n + 1, n3, 1)1 + (5n + 1, n4, 12)1 + (5n + 1, n3, n − 1)1

+ (5n, n + 1, n3, 12)1 + (5n, n4, 13)1 + (5n, n4)1

+ (5n, n3, n − 1, 1)2 + (5n, n, (n − 1)3)1 + (5n − 1, n4, 1)1

+ (5n − 1, n2, (n − 1)2)1

(217) × (6n, n3) = (6n + 2, (n + 1)3, 14)1 + (6n + 1, (n + 1)3, 213)1 + (6n + 1, (n + 1)2, n, 13)1

+ (6n + 1, n + 1, n2, 14)1 + (6n + 1, n + 1, n2, 1)1 + (6n + 1, n3, 12)1

+ (6n + 1, n2, n − 1)1 + (6n, (n + 1)2, n, 14)1 + (6n, n + 1, n2, 12)1

+ (6n, n + 1, n, n − 1)1 + (6n, n3, 13)1 + (6n, n3)1

+ (6n, n2, n − 1, 1)2 + (6n, (n − 1)3)1 + (6n − 1, n3, 1)1

+ (6n − 1, n, (n − 1)2)1
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Table 14. Classification of types of tensor product (µ) × (ν) characterized by the breadth and
Dynkin weight of (µ) and (ν).

Case 1 b(µ) = 1 w(µ) = 1 b(ν) = 1 w(ν) = 1
Case 2 b(µ) = 1 w(µ) = 1 b(ν) = 1 w(ν) = n > 1
Case 3 b(µ) = 1 w(µ) = m > 1 b(ν) = 1 w(ν) = n > 1
Case 4 b(µ) = 1 w(µ) = 1 b(ν) > 1 w(ν) = n > 1
Case 5 b(µ) = 1 w(µ) = m > 1 b(ν) > 1 w(ν) = n > 1
Case 6 b(µ) > 1 w(µ) = m > 1 b(ν) > 1 w(ν) = n > 1

Table 15. Maximum values of the tensor product multiplicities c(λ;ωi, ωj ) for G2.

(21) (1)

10 (21) 1 1
01 (1) 1 1

Table 16. Maximum values of the tensor product multiplicities c(λ;ωi, ωj ) for F4.

(12) (212) (); 1) (1)

1000 (12) 1 1 1 1
0100 (212) 1 3 2 1
0010 (); 1) 1 2 2 1
0001 (1) 1 1 1 1

non-negative integer for i = 1, 2, . . . , k, part (i) may then be used precisely w(π) = ∑k
i=1 ai

times, by adding to µ a succession of ai copies of ωi for i = 1, 2, . . . , k, to conclude that
c(λ + π;µ, ν + π) � c(λ;µ, ν) > 1, thereby proving part (ii). �

In the present context the significance of this corollary is that passing from (ν) to (ν +ωi)

is equivalent to adding 1 to the ith component of the Dynkin label ((a)) of (ν). This will
certainly increase the Dynkin weight by 1, and will also increase the breadth by 1 if the ith
component of ((a)) was originally zero. The same is true in passing from (µ) to (µ + ωi)

for all i = 1, 2, . . . , k. These increases of breadth and Dynkin weight are precisely what are
involved in moving from one case to another in the tabulated sequence of cases 1–6, and in
moving from m to m + 1 or n to n + 1 within the appropriate cases.

Here case 1 corresponds to the most important case of all, namely the tensor products of
all possible pairs of fundamental irreps (ωi) × (ωj ) with i, j ∈ {1, 2, . . . , k}. These tensor
products may be readily determined and we display the resulting data in the form of a matrix
of positive integers. Each entry is the maximum multiplicity appearing in the decomposition
of the tensor product of the irreps (ωi) × (ωj ). Row irreps (ωi) are labelled using both
Dynkin and standard partition labels, while column irreps (ωj ) are just labelled using standard
partition labels. These results are given in tables 15–19. They establish those case 1 tensor
products (µ) × (ν) with b(µ) = w(µ) = b(ν) = w(ν) = 1 that are multiplicity free,
namely those associated with an entry 1 in tables 15–19. All other entries are associated with
non-multiplicity-free products.

Almost all of the multiplicity-free tensor products that are identified through the entry 1 in
these tables have already been encountered in our analysis of products involving the defining
irrep, its contragredient and the adjoint irrep. There remain just two new ones:

E7:(2)×(2)=(426)+(42214)+(414)+(4) + (315) + (31) + (22) + (216) + (212) + (0); (5.1a)

E8:(21) × (21)=(427)+(4216)+(42)+(415)+(412)+(316) + (3) + (217) + (21) + (0). (5.1b)
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Table 17. Maximum values of the tensor product multiplicities c(λ;ωi, ωj ) for E6.

(1:1) (2:12) (3:13) (2:14) (1:15) (2:0)

100 000 (1:1) 1 1 1 1 1 1
010 000 (2:12) 1 2 2 2 1 1
001 000 (3:13) 1 2 4 2 1 1
000 100 (2:14) 1 2 2 2 1 1
000 010 (1:15) 1 1 1 1 1 1
000 001 (2:0) 1 1 1 1 1 1

Table 18. Maximum values of the tensor product multiplicities c(λ;ωi, ωj ) for E7.

(216) (315) (414) (313) (212) (12) (2)

1000 000 (216) 1 1 1 1 1 1 1
0100 000 (315) 1 3 5 3 2 1 2
0010 000 (414) 1 5 12 5 3 1 2
0001 000 (313) 1 3 5 4 2 1 2
0000 100 (212) 1 2 3 2 2 1 2
0000 010 (12) 1 1 1 1 1 1 1
0000 001 (2) 1 2 2 2 2 1 1

Table 19. Maximum values of the tensor product multiplicities c(λ;ωi, ωj ) for E8.

(217) (316) (415) (514) (613) (412) (21) (3)

10 000 000 (217) 1 1 1 1 1 1 1 1
01 000 000 (316) 1 3 4 5 7 4 2 3
00 100 000 (415) 1 4 9 15 27 10 2 5
00 010 000 (514) 1 5 15 40 81 18 2 6
00 001 000 (613) 1 7 27 81 214 33 3 10
00 000 100 (412) 1 4 10 18 33 10 2 5
00 000 010 (21) 1 2 2 2 3 2 1 2
00 000 001 (3) 1 3 5 6 10 5 2 3

6. Tensor products of fundamental irreps with scaled fundamental irreps

In case 2 we consider the cases where all the column labels involved in case 1 are scaled by
n, so that the corresponding non-vanishing component of the Dynkin label for (ν) is now n,
with n � 2, that is tensor products of the form (µ) × (ν) = (ωi) × (nωj ) for which b(µ) =
b(ν) = w(µ) = 1 and w(ν) = n with n � 2. Products of this type with (µ) = (ω), (ω) and
(θ), corresponding to the defining, its contragredient and the adjoint irreps, have already been
considered. The others are new. Our results are again displayed as matrices in tables 20–24.

In these matrices an entry ∗ indicates that the product is not multiplicity free even for
n = 1, as evidenced by the case 1 data of tables 15–19. Corollary 5 then implies that it is not
multiplicity free for any n � 1. Similarly, an entry ∗∗ indicates that explicit calculation of the
product has shown it to be not multiplicity free for n = 2. As before, corollary 5 then implies
that it is not multiplicity free for any n � 2. In contrast to this, an entry 1 indicates that the
decomposition of the tensor product is found to be multiplicity free not just for n = 2 but for
all n � 2. The latter is a consequence of the stabilization of such products with respect to
ν(hj ) = nωj (hj ) = n and proposition 1, together with the observation that in every case the
stability onset parameter is found to be given by ns(ωi) = 2.



Multiplicity-free tensor products and the exceptional Lie groups 3505

Table 20. Maximum values of the tensor product multiplicities c(λ;ωi, nωj ) for G2.

(2n, n) (n)

10 (2, 1) 1 1
01 (1) 1 1

Table 21. Maximum values of the tensor product multiplicities c(λ;ωi, nωj ) for F4.

(n2) (2n, n2) ( 3n
2 , n

2
3) (n)

1000 (12) 1 1 1 1
0100 (212) ∗∗ ∗ ∗ ∗∗
0010 ( 3

2
1
2

3
) 1 ∗ ∗ ∗∗

0001 (1) 1 1 1 1

Table 22. Maximum values of the tensor product multiplicities c(λ;ωi, nωj ) for E6.

(n : n) (2n : n2) (3n : n3) (2n : n4) (n : n5) (2n : 0)

100 000 (1 : 1) 1 1 1 1 1 1
010 000 (2 : 12) 1 ∗ ∗ ∗ 1 1
001 000 (3 : 13) ∗∗ ∗ ∗ ∗ ∗∗ ∗∗
000 100 (2 : 14) 1 ∗ ∗ ∗ 1 1
000 010 (1 : 15) 1 1 1 1 1 1
000 001 (2 : 0) 1 1 1 1 1 1

Table 23. Maximum values of the tensor product multiplicities c(λ;ωi, nωj ) for E7.

(2n, n6) (3n, n5) (4n, n4) (3n, n3) (2n, n2) (n2) (2n)

1000 000 (216) 1 1 1 1 1 1 1
0100 000 (315) ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗
0010 000 (414) ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗
0001 000 (313) ∗∗ ∗ ∗ ∗ ∗ ∗∗ ∗
0000 100 (212) 1 ∗∗ ∗∗ ∗∗ ∗∗ 1 ∗
0000 010 (12) 1 1 1 1 1 1 1
0000 001 (2) 1 ∗ ∗ ∗ ∗ 1 1

Table 24. Maximum values of the tensor product multiplicities c(λ;ωi, nωj ) for E8.

(2n, n7) (3n, n6) (4n, n5) (5n, n4) (6n, n3) (4n, n2) (2n, n) (3n)

10 000 000 (217) 1 1 1 1 1 1 1 1
01 000 000 (316) ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
00 100 000 (415) ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
00 010 000 (514) ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
00 001 000 (613) ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
00 000 100 (412) ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
00 000 010 (21) 1 ∗ ∗ ∗ ∗ ∗ 1 ∗
00 000 001 (3) ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

In the case of those tensor products that are indicated to be multiplicity free by means of an
entry 1 the conclusions have been tested by explicit calculations for values of n ranging from
n = 1 up to values that are sufficiently large for the product to be generic, in the sense that the
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Table 25. Further explicit multiplicity-free tensor products (ωi) × (nωj ) for F4.

(); 1) × (n2) = (); n + 1, n)1 + (); n + 1, n − 1)1 + (n + 1, n)1 + (n + 1, n − 1, 1)2

+ (n + 1, n − 1)1 + (); n, n − 1)1 + (); n, n − 2)2 + (n, n − 1)1

+ (); n − 1, n − 2)2

Table 26. Further explicit multiplicity-free tensor products (ωi) × (nωj ) for E6.

(2 : 12) × (n : n) = (n + 2 : n + 1, 1)1 + (n + 2 : n, 12)1 + (n + 1 : n + 1, 14)1

+ (n + 1 : n, 213)2 + (n + 1 : n − 1)1 + (n : n − 1, 13)2

(2 : 14) × (n : n) = (n + 2 : n + 1, 13)1 + (n + 2 : n, 14)1 + (n + 1 : n, 1)1

+ (n + 1 : n − 1, 12)2 + (n : n, 14)1 + (n : n − 2)2

(2 : 12) × (2n : 0) = (2n + 2 : 12)1 + (2n + 1 : 213)1 + (2n + 1 : 15)1

+ (2n : 2312)2 + (2n : 2)1 + (2n : 12)1

+ (2n − 1 : 213)2 + (2n − 1 : 15)1 + (2n − 2 : 12)2

(2 : 14) × (2n : 0) = (2n + 2 : 14)1 + (2n + 1 : 2213)1 + (2n + 1 : 1)1

+ (2n : 25)1 + (2n : 212)2 + (2n : 14)1

+ (2n − 1 : 2213)2 + (2n − 1 : 1)1 + (2n − 2 : 14)2

Table 27. Further explicit multiplicity-free tensor products (ωi) × (nωj ) for E7.

(2) × (2n) = (2n + 2, 26)1 + (2n + 2, 22 14)1 + (2n + 2, 14)1 + (2n + 2)1

+ (2n + 1, 23 13)2 + (2n + 1, 213)2 + (2n + 1, 15)1 + (2n + 1, 1)1

+ (2n, 214)2 + (2n, 2)1 + (2n, 16)1 + (2n, 12)1 + (2n − 1, 13)2

+ (2n − 2)1

(2) × (n2) = (n + 2, n, 14)1 + (n + 2, n)1 + (n + 1, n, 15)1 + (n + 1, n, 1)1

+ (n + 1, n − 1, 12)2 + (n, n − 2)2

(2) × (2n, n6) = (2n + 2, n6)1 + (2n + 1, n + 1, n5)1 + (2n + 1, n3, (n − 1)3)1

+ (2n, n, (n − 1)4, n − 2)2 + (2n, (n − 1)6)1 + (2n − 1, n, (n − 1)5)1

+ (2n − 1, (n − 1)3, (n − 2)3)2 + (2n − 2, (n − 2)6)2

(212) × (2n, n6) = (2n + 2, (n + 1)2, n4)1 + (2n + 1, n5, n − 1)1 + (2n + 1, n, (n − 1)5)1

+ (2n, n + 1, (n − 1)5)1 + (2n, n6)1 + (2n, n2, (n − 1)4)1

+ (2n, (n − 1)4, (n − 2)2)2 + (2n − 1, (n − 1)5, n − 2)2 + (2n − 1, n − 1, (n − 2)5)2

+ (2n − 2, (n − 1)2, (n − 2)4)2

(212) × (n2) = (n + 2, n + 1, 15)1 + (n + 2, n + 1, 1)1 + (n + 2, n, 214)2 + (n + 2, n, 12)1

+ (n + 1, n − 1, 14)2 + (n + 1, n − 1)1 + (n2)1 + (n, n − 1, 15)2 + (n, n − 1, 1)2

decomposition of the product has a structurally stable form with terms having an identifiable
dependence on n, with all terms multiplicity free for all n. The explicit expansions for all
these case 2 multiplicity-free products are given in tables 25– 28, save for the two E6 products
(2 : 12) × (n : n5) and (2 : 14) × (n : n5) which may be obtained from (2 : 14) × (n : n)

and (2 : 12) × (n : n), respectively, by taking their contragredients. The convention on the
subscripts appearing in tables 25–28 is as before. That is, a subscript r on any term (λ)r
indicates that the irrep (λ) is present in the decomposition of the tensor product for all n � r .
Since the only values of r that occur are r = 1 and 2, and these values appear in each product,
it follows that each product is stable with respect to n, in the sense of proposition 1, for all
n � 2.

Once again, the decompositions of these tensor products were all determined through the
use of SCHUR with n sufficiently large for stability to be observed. Then, by considering a
range of smaller values of n, the stabilization value ns(ωi) was confirmed, as well as the values
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Table 28. Further explicit multiplicity-free tensor products (ωi) × (nωj ) for E8.

(21) × (2n, n) = (2n + 2, n + 1, 26)1 + (2n + 2, n + 1, 16)1 + (2n + 2, n + 1)1

+ (2n + 2, n, 215)2 + (2n + 2, n, 14)1 + (2n + 2, n, 1)1

+ (2n + 1, n, 15)1 + (2n + 1, n − 1, 16)2 + (2n + 1, n − 1, 13)2

+ (2n + 1, n − 1)1 + (2n, n, 16)1 + (2n, n)1

+ (2n, n − 1, 14)2 + (2n, n − 1, 1)2 + (2n − 1, n − 2)2

+ (2n − 2, n − 1)1

(21) × (2n, n7) = (2n + 2, n + 1, n6)1 + (2n + 1, n6, n − 1)1 + (2n + 1, (n − 1)7)1

+ (2n, n7)1 + (2n, n, (n − 1)6)1 + (2n, (n − 1)5, (n − 2)2)2

+ (2n − 1, (n − 1)6, n − 2)2 + (2n − 1, (n − 2)7)2

+ (2n − 2, n − 1, (n − 2)6)2

Table 29. Multiplicity-free tensor products (mωi) × (nωj ) with m, n � 2.

G2: (2) × (2n, n);

F4: (2) × (n2);

E6: (m : m) × (n : n), (m : m5) × (n : n5), (m : m) × (n : n5),
(m : m) × (2n : n2), (m : m) × (2n : n4), (m : m) × (2n : 0),
(m : m5) × (2n : n2), (m : m5) × (2n : n4), (m : m5) × (2n : 0);

E7: (22) × (2n, n2), (m2) × (2n, n6), (m2) × (n2), (m2) × (2n).

of r for each term (λ)r . Finally, the generic result was checked dimensionally using Maple,
with the dimension formula depending polynomially on the parameter n.

7. Tensor products of scaled fundamental irreps with scaled fundamental irreps

In case 3 tensor products of scaled fundamental irreps with scaled fundamental irreps are
considered, that is tensor products (µ) × (ν) = (mωi) × (nωj ) for which b(µ) = b(ν) = 1
and w(µ) = m and w(ν) = n with m, n � 2. Given the weakly monotonic increasing nature
of the maximum tensor product multiplicity with respect to both m and n, in order to determine
the set of all case 3 multiplicity-free tensor products it is only necessary to confine attention
to those case 2 tensor products for which the (ωi) × (nωj ) and (ωj ) × (nωi) matrix elements
in tables 20–24 are both 1. The complete list of case 3 tensor products that are found to be
multiplicity free is given in table 29.

In the three cases for which m is limited to the value 2, the corresponding tensor products,
valid for all n � 2, take the form

G2: (2) × (2n, n) = (2n + 2, n)1 + (2n + 1, n)1 + (2n + 1, n − 1)1 + (2n, n)1

+ (2n, n − 1)1 + (2n, n − 2)2 + (2n − 1, n − 1)1 + (2n − 1, n − 2)2

+ (2n − 2, n − 2)2. (7.1)

F4: (2) × (n2) = (n + 2, n)1 + (); n + 1, n − 1)1 + (n + 1, n, 1)1

+ (n + 1, n − 1, 12)2 + (n + 1, n − 1)1 + (); n, n − 1)1

+ (); n, n − 2)2 + (n2)1 + (n, n − 1, 1)2 + (n, n − 2)2. (7.2)
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Table 30. Upper limits of summation for the E6 tensor product expansions (7.4a)–(7.4e).

(m : m) × (n : n) A = min(m, n)

B = min(m − a, n − a)

(m : m) × (n : n5) A = min(m, n)

B = min(m − a, n − a)

(m : m) × (2n : 0) A = min([m/2], n)
B = min(m − 2a, n − a)

C = min(m − 2a − b, n − a − b)

(m : m) × (2n : n2) A = min([m/2], n)
B = min(m − 2a, n − a)

C = min([(m − 2a − b)/2], n − a − b]
D = min(m − 2a − b − 2c, n − a − b − c)

E = min(m − 2a − b − 2c − d, n − a − b − c − d)

(m : m) × (2n : n4) A = min([m/2], n)
B = min(m − 2a, n − a)

C = min([(m − 2a − b)/2], n − a − b]
D = min(m − 2a − b − 2c, n − a − b − c)

E = min(m − 2a − b − 2c − d, n − a − b − c − d)

E7: (22) × (2n, n2) = (2n + 2, n + 2, n, 24)2 + (2n + 2, n + 2, n, 14)1 + (2n + 2, n + 2, n)1

+ (2n + 2, (n + 1)2, 14)1 + (2n + 2, n + 1, n, 213)2 + (2n + 2, n + 1, n, 1)2

+ (2n + 2, n2, 2)2 + (2n + 1, n2, 13)1 + (2n + 1, n, n − 1, 14)2

+ (2n + 1, n, n − 1)1 + (2n + 1, (n − 1)2, 1)2 + (2n, n + 1, n − 1, 14)2

+ (2n, n + 1, n − 1)1 + (2n, n2, 14)1 + (2n, n2)1 + (2n, n, n − 1, 1)2

+ (2n, (n − 2)2)2 + (2n − 1, n − 1, n − 2)2 + (2n − 2, n, n − 2)2. (7.3)

As can be seen from the values of the subscripts r , it is found once again that each of these
decompositions is stable as a function of n for all n � 2. Once more the formulae, arrived at
through the use of SCHUR, have been checked dimensionally using Maple.

In the remaining cases, the corresponding case 3 m- and n-dependent expansions of these
tensor products are given for E6 by

(m : m) × (n : n) =
A,B∑
a,b=0

(m + n − a : m + n − a − b, a + b, a3) (7.4a)

(m : m) × (n : n5) =
A,B∑
a,b=0

(m + n − 2a : m + n − 2a − 2b, (n − a − b)4) (7.4b)

(m : m) × (2n : 0) =
A,B,C∑
a,b,c=0

(m + 2n − 2a − 2b − c : m − a, a + c, c2, 0) (7.4c)

(m : m) × (2n : n2) =
A,B,C,D,E∑
a,b,c,d,e=0

(m + 2n − 2a − b − c − d : m + n

− 2a − 2b − c − e, n − b + c, a + c + d + e, a + c + d, c + d) (7.4d)

(m : m) × (2n : n4) =
A,B,C,D,E∑
a,b,c,d,e=0

(m + 2n − 2a − 2b − c − d : m + n

− 3a − b − 2c − d − e, n − a, n − a − d, n − a − c − d, b + e) (7.4e)

where the upper limits A,B,C of the summation parameters are given in table 30.
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Table 31. Upper limits of summation for the E7 tensor product expansions (7.5a)–(7.5c).

(m2) × (2n, n6) A = min([m/2], n)
B = min(m − 2a, n − a)

C = min(m − 2a − b, n − a − b)

(m2) × (n2) A = min(m, n)

B = min(m − a, n − a)

C = min(m − a − b, n − a − b)

(m2) × (2n) A = min([m/2], [n/2])
B = min([m/2] − a, n − 2a)
C = min([m/2] − a − b, n − 2a − b)

D = min(m − 2a − 2b − 2c, n − 2a − b − c)

E = min(m − 2a − 2b − 2c − d, n − 2a − b − c − d)

F = min(m − 2a − 2b − 2c − d − e, n − 2a − b − c − d − e)

That these E6 tensor product decomposition formulae (7.4) are all stable both with respect
to m for fixed n and with respect to n for fixed m can be seen from the nature of the upper
limits of summation appearing in table 30. In fact the expansions (7.4a)–(7.4e) are stable
with respect to m for fixed n if m � n, n, 2n, 2n, 2n, respectively, and stable with respect to
n for fixed m if n � m,m, [m/2], [m/2], [m/2], respectively. The structures of the formulae
were arrived at by using SCHUR to evaluate explicit products with large values of m and n.
The generic formuale arising for sufficiently large m and sufficiently large n were themselves
then checked dimensionally using Maple as polynomials in m for various fixed n, and then as
polynomials in n for fixed m.

The other E6 tensor products listed in table 29, namely (m : m5) × (n : n5), (m :
m5) × (2n : 0), (m : m5) × (2n : n2) and (m : m5) × (2n : n4) may be obtained by taking the
contragredient (7.4a), (7.4c), (7.4e) and (7.4d), respectively.

In the case of the case 3 m- and n-dependent E7 tensor products we find

(m2) × (2n, n6) =
A,B,C∑
a,b,c=0

(m + 2n − 2a − 2b − c,m + n

− 2a − b − 2c, n − b − c, (n − a − b − c)4) (7.5a)

(m2) × (n2) =
A,B,C∑
a,b,c=0

(m + n − 2a,m + n − 2a − b − c, b + c, c4) (7.5b)

(m2) × (2n) =
A,B,C,D,E,F∑
a,b,c,d,e,f=0

(m + 2n − 2a − 2b − c − d − e,m − a

− 2b − c, a + c + d + e + f, a + c + e + f, a + e + f, e + f, e) (7.5c)

where the upper limits A,B, . . . , F of the summation parameters are given in table 31.
Once again, the fact that the E7 tensor product decomposition formulae (7.4) are all stable

both with respect to m for fixed n and with respect to n for fixed m can be seen from the nature
of the upper limits of summation appearing in table 31. This time the expansions (7.4a)–(7.4e)
are stable with respect to m for fixed n if m � 2n, n, n, respectively, and stable with respect to n

for fixed m if n � [m/2],m,m, respectively. The structures of the formulae were again arrived
at by using SCHUR to evaluate explicit products with large values of m and n. The generic
formulae arising for sufficiently large m and sufficiently large n were themselves then checked
dimensionally using Maple as polynomials in m for various fixed n, and then as polynomials
in n for fixed m.
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8. Tensor products of fundamental irreps with irreps of breadth > 1

In case 4 we consider tensor products of fundamental irreps (µ) = (ωi), for which
b(µ) = w(µ) = 1, with irreps (ν) with b(ν) > 1 but excluding the cases for which
(ωi) = (ω), (ω̄) or (θ) where (ω) and (θ) are the defining and adjoint irreps, respectively.
In testing for multiplicity-free products we may set aside those tensor products (ωi) × (ν) for
which ν = ∑k

j=1 ajωj has a non-vanishing component ajωj in the fundamental basis such
that (ωi) × (ωj ) is not multiplicity free. Corollary 5 implies that such products cannot be
multiplicity free. To proceed further one examines those cases of the form (ωi) × (ωj + ωk)

with j �= k. Considering each exceptional Lie group in turn one readily concludes that the only
exceptional Lie group multiplicity-free products of the type (µ)× (ν) with b(µ) = w(µ) = 1
and b(ν) � 2 are the following:

G2: (1) × (ν) for all (ν); (8.1a)

F4: (1) × (ν) for all (ν) with either ν1 = ν2 + ν3 + ν4 or ν4 = 0 or both; (8.1b)

E6: (1 : 1) × (ν) and (1 : 15) × (ν) for all (ν); (8.1c)

E7: (12) × (ν) for all (ν). (8.1d)

These have all been dealt with previously since in each case (µ) is either the defining irrep
(ω) or its contragredient (ω).

9. Tensor product of a breadth 1 irrep of Dynkin weight > 1 with an irrep of
breadth > 1

In case 5 we consider products of the type (µ) × (ν) = (mωi) × (ν) with b(µ) = 1,
w(µ) = m > 1 and b(ν) � 2.

By the usual argument based on corollary 5 we can confine attention to the multiplicity-
free products appearing under case 4, with (µ = ωi) scaled by m with m > 1. The relevant
(µ) are the natural irreps (ω) of G2, F4, E6 and E7, together with the irrep (ω) of E6. For
(ν) = (ωj + ωk) we need only consider those cases for which, in the tabulations of case 2,
(ωj ) and (ωk) specify distinct rows in which the entries in the column specified by (nω) are
1, and neither ∗ nor ∗∗. In each case we start with a scaling factor m = 2.

Examining each exceptional Lie group in turn we find that the only multiplicity-free cases
occur in E6. These are the cases

(2ω) × (ω + ω) = (2 : 2) × (2 : 214) (9.1a)

(2ω) × (ω + ω) = (2 : 25) × (2 : 214). (9.1b)

More generally, it has been found that the products

(mω) × (nω + pω) and (mω) × (nω + pω) (9.2)

or, equivalently,

(m : m) × (n + p : n + p, p4) and (m : m5) × (n + p : n + p, p4) (9.3)

are multiplicity free for all positive integer values of m, n and p. In particular we have the
expansion

(m : m) × (n + p : n + p, p4) =
A,B,C,D,E∑
a,b,c,d,e=0

(m + n + p − a − 2b − d : m + n + p

− 2a − 2b − 2c − d − e, p − b − c + d + e, (p − b − c + d)3) (9.4)

where the upper limits A,B, . . . , E of the summation parameters are given in table 32.
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Table 32. Upper limits of summation for the E6 tensor product expansion (9.4).

(m : m) × (n + p : n + p, p4) A = min(p, n)
B = min(m − a, p − a)

C = min(m − a − b, p − a − b)

D = min(m − a − b − c, n − a)

E = min(m − a − b − c − d, n − a − d)

The expansion of the E6 tensor product (m : m5) × (n + p : n + p, p4) is just the
contragredient of that given in (9.4).

It has been verified that the decomposition (9.4) is stable with respect to m for fixed n and
p if m � n + p, stable with respect to n for fixed m and p if n � m and stable with respect to
p for fixed m and n if p � n. Each of the corresponding generic formulae has been checked
dimensionally using Maple, expressing the left- and right-hand sides of (9.4) as polynomials
in m, n and p, as appropriate.

10. Remaining cases

It only remains to consider those products (µ)×(ν) with b(µ) > 1 and b(ν) > 1 that constitute
case 6. Using the above results on products with b(µ) = 1 and w(µ) = w � 1 and b(ν) > 1,
together with the usual weakly monotonic increasing argument, the only possible candidates
are E6 products of the form (µ) × (ν) = (mω + nω) × (pω + qω) with m, n, p, q � 1.
However, in the case m = n = p = q = 1 we find the following maximum multiplicity:

100 010
(2 : 214)

100 010 (2 : 214) 3

It follows that there are no multiplicity-free tensor products of the type (µ)×(ν) with b(µ) > 1
and b(ν) > 1 for E6, nor indeed for any of the exceptional Lie groups.

11. Summary and conclusion

We can now collect together in one place the list of all multiplicity-free tensor products for
each of the exceptional Lie groups as follows.

G2: (0) × (ν) and (1) × (ν) for all (ν)

(21) × (n), (2n, n)

(2) × (2n, n) (11.1)

F4: (0) × (ν) for all (ν)

(1) × (ν) for all (ν) with either ν1 = ν2 + ν3 + ν4 or ν4 = 0 or both

(12) × (n), (n2), (2n, n), (3n, n3), (); 3n + 1, n3)

(); 1) × (n2)

(2) × (n2) (11.2)

E6: (0 : 0) × (ν), (1 : 1) × (ν) and (1 : 15) × (ν) for all (ν)

(2 : 0) × (n : n), (n : n5), (2n : 0), (2n : n2), (2n : n4), (3n : n3)

(2 : 12) × (2n : 0) and (2 : 14) × (2n : 0)

(m : m) × (n : n), (n : n5), (2n : 0), (2n : n2), (2n : n4), (n + p : n + p, p4)
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(m : m5) × (n : n), (n : n5), (2n : 0), (2n : n2), (2n : n4), (n + p : n + p, p4)

(11.3)

E7: (0) × (ν) and (12) × (ν) for all (ν)

(216) × (2n), (n2), (2n, n2), (2n, n6), (3n, n3), (3n, n5), (4n, n5)

(2) × (2n), (n2), (2n, n6)

(212) × (n2), (2n, n6)

(22) × (2n, n2)

(m2) × (n2), (2n), (2n, n6) (11.4)

E8: (0) × (ν) for all (ν)

(217) × (2n, n), (2n, n7), (3n), (3n, n6), (4n, n2), (4n, n5)

(5n, n4), (6n, n4)

(21) × (2n, n), (2n, n7). (11.5)

In each case we have presented either in a table or the text an explicit formula for the
decomposition of the corresponding tensor product which is manifestly multiplicity free. In the
case of those parametrized by m, n or p the resulting formulae all show themselves to be stable
with respect to sufficiently large values of these parameters, as required by proposition 1, and
the resulting generic formulae have all been checked dimensionally for accuracy as polynomials
in m, n or p. The formulae have all been expressed in terms of standard labels, but since every
multiplicity-free product is of the form mωi × (nωj1 + pωj2) with 1 � i, j1, j2 � k and
m, n, p � 0 it is rather easy to read off the corresponding Dynkin labels ((a)) for the relevant
irreps from table 3.

Finally, we would like to point that proposition 1, that has proved to be so useful here
in the multiplicity-free context, remains valid and of considerable use in the case of tensor
products that are not multiplicity free. These, also, are subject to certain structural stability
properties.
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